
Numeric Function Generators Using Decision Diagrams for Discrete Functions

Shinobu Nagayama1 Tsutomu Sasao2 Jon T. Butler3

1 Department of Computer and Network Engineering, Hiroshima City University
2 Department of Computer Science and Electronics, Kyushu Institute of Technology
3 Department of Electrical and Computer Engineering, Naval Postgraduate School

Abstract

This paper introduces design methods for numeric func-
tion generators (NFGs) using decision diagrams. NFGs
are hardware accelerators to compute values of numeric
functions such as trigonometric, logarithmic, square root,
and reciprocal functions. Most existing design methods
for NFGs are intended only for a specific class of numeric
functions. However, by using decision diagrams for dis-
crete functions (i.e., word-level decision diagrams), we can
systematically design fast and compact NFGs for a larger
class of functions. This paper shows three design methods
for NFGs using 1) multi-terminal binary decision diagrams
(MTBDDs), 2) binary moment diagrams (BMDs), and 3)
edge-valued binary decision diagrams (EVBDDs).

Keywords: Numeric function generators (NFGs), numeric
functions, decision diagrams for discrete functions (word-
level decision diagrams)

1. Introduction

Numeric functions such as trigonometric, logarithmic,
square root, reciprocal, and combinations of these functions
are extensively used in computer graphics, digital signal
processing, communication systems, robotics, astrophysics,
fluid physics, and so forth [19]. In these applications, as
well as addition and multiplication, numeric functions are
usually used as a basic operation.

The computation of numeric functions has been studied
for more than 150 years [35], and various algorithms, such
as COordinate Rotation DIgital Computer (CORDIC) [1,
33] have been proposed. Most programming languages
have a library containing numeric functions (e.g., math.h

in C) and users are often unaware of the methods for com-
puting those functions. With the increasing use of digital
systems in commercial products, there has been an increase
in the need for systematic design methods for numeric func-
tion generators (NFGs) that can realize a large set of nu-
meric functions.

Although NFGs based on iterative algorithms such as
CORDIC are compact and achieve high-precision, they can
be slow because their computation time is proportional to
the precision (that is, the number of bits) [32]. For a func-
tion that is composed of other functions, such as the Box-
Muller functions, f1 =

√

−2ln(g1)cos(2πg2) and f2 =
√

−2ln(g1) sin(2πg2), an iterative computation of each ba-
sic function, s = ln(g1) followed by

√
−2s, can yield a large

computation time. This is due, in part, to the time required
to do an iterative computation and, in part, to the fact that
one computation (s = ln(g1)) must be computed before the
next (

√
−2s) is started. Another disadvantage of iterative

algorithms is that they are applicable only to specific func-
tions. We seek a design method that applies to a general
class of functions and yields a small delay time, even if the
realized function is composite.

A straightforward design method for an arbitrary func-
tion f (x) is to use a single lookup table (LUT) in which
the address is the binary representation of the value of x
and the content of that address is the corresponding value
of f (x). This design method produces a very fast NFG be-
cause the value of function is obtained by only one table
lookup. Thus, for low-precision computations of f (x) (for
example, x and f (x) have 8 bits), this design method is effi-
cient, since the size of the LUT is small. For high-precision
computations, however, it is impractical due to the huge ta-
ble size.

To reduce the table size, various design methods based
on polynomial approximation have been proposed [3, 8, 11,
12,16,27–29,31,36]. These methods approximate the given
numeric functions by piecewise polynomials and realize the
polynomials with hardware. Linear or quadratic approxima-
tions offer fast and relatively high-precision computation of
numeric functions. However, most existing design methods
based on polynomial approximation are intended only for a
specific class of functions, and thus, applying them to other
functions is not always efficient. Indeed, we showed that the
existing design methods are inefficient for certain numeric
functions [26]. Thus, systematic design methods intended
for a larger class of functions are required.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2009 2. REPORT TYPE

3. DATES COVERED

4. TITLE AND SUBTITLE
Numeric Function Generators Using Decision Diagrams for Discrete
Functions

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Department of Electrical and Computer
Engineering,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This paper introduces design methods for numeric function generators (NFGs) using decision diagrams.
NFGs are hardware accelerators to compute values of numeric functions such as trigonometric,
logarithmic, square root and reciprocal functions. Most existing design methods for NFGs are intended
only for a speci c class of numeric functions. However, by using decision diagrams for discrete functions
(i.e., word-level decision diagrams), we can systematically design fast and compact NFGs for a larger class
of functions. This paper shows three design methods for NFGs using 1) multi-terminal binary decision
diagrams (MTBDDs), 2) binary moment diagrams (BMDs), and 3) edge-valued binary decision diagrams
(EVBDDs).

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 0.2 0.4 0.6 0.8 1

f(
x)

x

linear approximation
uniform segments

(a) Uniform segmentation.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 0.2 0.4 0.6 0.8 1

f(
x)

x

linear approximation
non-uniform segments

(b) Non-uniform segmentation.

Figure 1. Piecewise polynomial approximation of arccos(x).

For design of typical digital circuits, systematic methods
using various decision diagrams such as binary decision di-
agrams (BDDs) [9,17] have been established [18,24,34,37].
Thus, we consider design methods for NFGs using decision
diagrams. By using decision diagrams for discrete func-
tions, called word-level decision diagrams, we can system-
atically design fast and compact NFGs for a large class of
functions. This paper introduces systematic design meth-
ods for NFGs using three word-level decision diagrams:
multi-terminal BDDs (MTBDDs) [4], binary moment di-
agrams (BMDs) [2], and edge-valued binary decision dia-
grams (EVBDDs) [14].

This paper is organized as follows: Section 2 introduces
a design method using MTBDDs. By using an MTBDD to
represent a component of an NFG, we can design a wide
range of functions efficiently. Although this design method
is based on a piecewise polynomial approximation, it is dif-
ferent from existing methods. This section also shows dif-
ferences between our method and existing methods. Sec-
tion 3 introduces a design method using BMDs. By con-
sidering fixed-point numeric functions as discrete (integer)
functions, we can apply the arithmetic transform to them.
Thereby, we can directly represent numeric functions using
BMDs, and produce NFGs from the BMDs. Section 4 in-
troduces a design method using EVBDDs. Many common
fixed-point numeric functions can be converted into mono-
tone discrete functions, and we can represent them com-
pactly using EVBDDs. This section shows that EVBDDs
are useful in producing fast and compact NFGs.

2. Design Method Using MTBDDs

This section introduces a design method that uses an
MTBDD to represent a component of an NFG. Since the
design method is based on a piecewise polynomial approx-

imation, this section first introduces the piecewise polyno-
mial approximation.

2.1. Piecewise Polynomial Approximation

Numeric functions can be approximated by polynomial
functions such as Taylor series and Chebyshev series. Since
polynomial functions can be realized with multipliers and
adders, any numeric functions can be realized in hardware
by using polynomial approximation. However, if a sin-
gle polynomial is used, a high order is usually required to
achieve the desired approximation error. Therefore, many
multipliers and adders are needed, and this results in a slow
NFG. Instead, we use more than one polynomial, dividing
the domain into (often many) segments where a lower order
polynomial can achieve the given approximation error. This
is achieved by piecewise polynomial approximation.

Piecewise polynomial approximation of a function f (x)
divides a domain x of the function f (x) into segments, and
approximates the function by a polynomial in each segment.
Because reducing the segment size can reduce the approxi-
mation error even if polynomial order is low, this approxi-
mation method is suitable for NFG design.

Many existing methods [3,8,11,12,16,27–29,31,36] use
piecewise polynomial approximation based on uniform seg-
mentation, which divides a domain x into segments with the
same size as the smallest segment size needed to achieve the
desired accuracy as shown in Fig. 1(a). A piecewise linear
polynomial approximation based on uniform segmentation
can be realized with the architecture shown in Fig. 2(a). In
this architecture, the most significant bits of x are used to
specify a segment i where bi ≤ x < ei, and the least signifi-
cant bits determine a point within that segment (x−bi). The
coefficients table stores polynomial coefficients c1i and c0i

for each segment, which are used to compute a linear poly-
nomial c1i(x−bi)+c0i. Uniform segmentation can yield too

Coefficients Table
(ROM)

Multiplier

Adder

x

f(x) c (x - b) + c

i

c1i

MSBs LSBs

c0i

~~ 1i 0ii

(a) NFG based on uniform
segmentation.

Coefficients Table
(ROM)

Multiplier

Adder

x

i

Segment Index Encoder
(Circuit using MTBDD)

-b i

Adder

c0i c1i

f(x) c (x - b) + c~~ 1i 0ii

(b) NFG based on
non-uniform segmentation.

Figure 2. Architectures for NFGs.

LUT LUT LUT

Input x = (x ... x x)

Se
gm

en
t

in
de

x
i

n-1 1 0 2

rail

Figure 3. Architecture for segment index en-
coder.

many segments, depending on the functions realized [26].
Since the size of the coefficients table depends on the num-
ber of segments, for such functions, the NFGs require ex-
cessive memory size. Thus, an approximation with fewer
segments is desired to produce compact NFGs for various
functions.

To reduce the number of segments, we use another ap-
proximation method based on non-uniform segmentation.
In this method, segments are chosen to be as wide as pos-
sible while still achieving the desired accuracy as shown in
Fig. 1(b). Thus, the segments are likely to have different
widths. In this way, non-uniform segmentation yields fewer
segments than uniform segmentation, and results in a small
coefficients table. However, non-uniform segmentation re-
quires an additional circuit, called segment index encoder,
that maps values of x into a segment i, as shown in Fig. 2(b).
This is because a domain x is divided at arbitrary positions,
unlike uniform segmentation. Potentially, this is a complex
circuit that could cancel out the size reduction in the coeffi-
cients table. Therefore, simplifying this circuit is important.

We use MTBDDs to design the segment index encoders.

Table 1. Memory sizes (bits) needed for 24-bit
precision NFGs.

Function Domain No. of segments Memory size Ratio
f (x) Uniform Non Uniform Non [%]
1/x [1/32,1] 507,905 28,010 25,165,824 10,911,744 43√

x [0,1] 8,388,609 3,941 402,653,184 1,417,216 0.4
ln(x) [1/256,1] 522,241 11,761 22,544,384 5,586,944 25

x ln(x) (0,1) 2,097,152 4,535 69,206,016 2,588,672 4
√

− ln(x) (0,1] 8,388,608 12,089 209,715,200 5,668,864 3
arcsin(x) [0,1] 8,388,609 4,415 402,653,184 2,818,048 0.7
tan(πx) [0,31/64] 507,905 20,770 23,592,960 8,847,360 38

Uniform: Uniform segmentation. Non: Non-uniform segmentation.

By using MTBDDs, we can compactly realize any non-
uniform segmentation in which the memory size depends
on the number of segments [26]. As a result, we can sys-
tematically design fast and compact NFGs for a wide range
of numeric functions.

2.2. Design of the Segment Index Encoder

Fig. 3 shows the architecture of our segment index en-
coder. It consists of LUTs only. We design the segment in-
dex encoder by specifying the contents of each LUT. The
segment index encoder realizes a mapping from a fixed-
point representation of x into a segment index, as shown in
Fig. 4(a). We consider this mapping as a discrete function
shown in Fig. 4(b), and represent it using an MTBDD. By
decomposing the MTBDD, as shown in Fig. 4(c), we de-
sign the segment index encoder. In this figure, the column
labeled as ‘ri’ in the table of each LUT denotes the rails that
represent sub-functions in the MTBDD. In the MTBDD,
numbers assigned to edges that cut across the horizontal
lines represent the sub-functions. Since, in the MTBDD,
a value of the discrete function is obtained by traversing the
diagram from the root node to a terminal node, the segment
index encoder obtains a segment index by accessing each
LUT in a sequence.

2.3. Memory Size Needed for an NFG

Table 1 shows the number of segments for uniform and
non-uniform segmentations, and memory sizes needed for
the two NFGs shown in Fig. 2. Note that the memory size
of NFGs based on non-uniform segmentation is the sum of
memory sizes needed for the segment index encoder and the
coefficients table.

This table shows that, although NFGs based on non-
uniform segmentation require a segment index encoder,
they need less memory because the segment index encoder
is compact. In this way, by using MTBDDs, we can com-
pactly realize any non-uniform segmentation. As a result,
we can systematically design fast and compact NFGs for a
wide range of numeric functions.

Segments Index
0.0000 ≤ x < 0.2500 0
0.2500 ≤ x < 0.3750 1
0.3750 ≤ x < 0.4375 2
0.4375 ≤ x < 0.5000 3
0.5000 ≤ x < 0.6250 4
0.6250 ≤ x < 0.6875 5
0.6875 ≤ x < 0.7500 6
0.7500 ≤ x < 1.0000 7

(a) Segments and their index.

x3 x2 x1 x0 i x3 x2 x1 x0 i

0 0 0 0 0 1 0 0 0 4
0 0 0 1 0 1 0 0 1 4
0 0 1 0 0 1 0 1 0 5
0 0 1 1 0 1 0 1 1 6
0 1 0 0 1 1 1 0 0 7
0 1 0 1 1 1 1 0 1 7
0 1 1 0 2 1 1 1 0 7
0 1 1 1 3 1 1 1 1 7

(b) Discrete function.

x3

x2

0 0
0 1
1 0
1 1

0 *
1 0
1 1
2 0
2 1
3 *

x1

0 *
1 *
2 0
2 1
3 *
4 0
4 1
5 *

x0

0 1 2 3 4 5 6 7

x0 x0

x1 x1

x2 x2

x3

0 1 2 3

0 1 2 3 4 5

x3 x2 r0

 0
 1
 2
 3

r0 x1 r1

 0
 1
 2
 3
 4
 5

r1 x0 r2

 0
 1
 2
 3
 4
 5
 6
 7

2

3

3

r0

r1

r2

(c) Decomposition of MTBDD.

Figure 4. Design of segment index encoder.

Table 2. Number of distinct values in function
vector and arithmetic spectrum.

Numeric No. of distinct values Ratio
functions Function Spectrum [%]

2x −1 59,895 148 0.25
1√
x+1

− 1√
2

19,196 174 0.90

ln(x+1) 45,427 165 0.36
log2(x+1) 59,895 160 0.27√

x+1−1 27,147 138 0.50
2

x+1 −1 54,292 180 0.33
sin(x) 55,147 141 0.25

Number of bits for function values is 16.
Domain of the functions is 0 ≤ x < 1.
Ratio = Spectrum / Function × 100.

3. Design Method Using BMDs

In the previous section, by considering the segment index
encoder as a discrete function, we can use an MTBDD, re-
sulting in a compact design. However, not only the segment
index encoder but also a numeric function itself can be con-
sidered as a discrete function. Thus, we directly represent
numeric functions using word-level decision diagrams, and
produce their NFGs from the decision diagrams. Since nu-
meric functions can be expanded into polynomial functions,
such as a Taylor series, in this section, we use BMDs that
can represent polynomial functions compactly [22].

While terminal nodes in an MTBDD directly represent
values of a discrete function, terminal nodes in a BMD
represent the arithmetic spectrum obtained by the arith-

0 1 2 3 4 5 6

x0

x1 x1

x2

x0x0x0

(a) MTBDD

0 1 2 4 -1

x1

x2

A
x01

A
1

A
x11

A
1

(b) BMD

Figure 5. MTBDD and BMD for 3-bit fixed-
point sin(x).

metic transform of the discrete function. And, non-terminal
nodes represent the inverse arithmetic transform. That is,
the BMD represents the discrete function by the arithmetic
spectrum and the inverse arithmetic transform. As shown
in Table 2, for many numeric functions, the number of dis-
tinct values in the arithmetic spectrum is much smaller than
the number of distinct function values. Thus, BMDs rep-
resent numeric functions more compactly than MTBDDs,
as the example in Fig. 5 shows. In Fig. 5(b), each node la-
beled by ‘A’ represents the arithmetic transform expansion:
f = f0 + xi(f1 − f0).

Each non-terminal node of a BMD is realized with an
adder and an AND gate, as shown in Fig. 6. By comput-
ing the inverse arithmetic transform from the pre-computed
arithmetic spectrum using the circuit in Fig. 6, we obtain
values of the original discrete function. That is, by repre-
senting numeric functions using BMDs, we can design their
NFGs by a systematic use of the circuit in Fig. 6. Since the

A
1 xi

f
0

f - f
01

BMD node

Adder

f + x (f - f)
010 i

AND

f + x (f - f)
010 i

f
0

f - f
01

xi

Circuit

Figure 6. Realization of non-terminal node of
BMD.

0

x1 x1

x2

x0

1

2 1

4

Figure 7. EVBDD for 3-bit fixed-point sin(x).

size of the designed NFGs is proportional to the number of
BMD nodes, analysis of the complexity (size) of BMDs is
important. It has been presented in [22, 30]1.

4. Design Method Using EVBDDs

In the previous section, we used BMDs to represent nu-
meric functions in a design that was based on the view-
point that numeric functions can be expanded into polyno-
mial functions. In this section, we base the design on the
viewpoint that many common numeric functions can be con-
verted into monotone functions. In this case, we use EVB-
DDs [22].

Since many common numeric functions to be designed
in hardware are monotone increasing or decreasing, dis-
crete functions converted from their fixed-point represen-
tation are also monotone increasing or decreasing. Periodic
functions such as sin(x) are also monotone in a domain to
be designed in hardware (for example, 0 ≤ x ≤ π/2). While
an MTBDD represents function values at terminal nodes,
an EVBDD represents function values by the sum of edge
weights. As a result, EVBDDs represent numeric functions
that are converted into monotone discrete functions more

1Although Stankovic and Astola [30] use arithmetic transform decision
diagrams (ACDDs), their approach to the design of NFGs is similar to ours.
Thus, their analysis is useful for the design of NFGs.

Table 3. Numbers of nodes in three decision
diagrams for numeric functions.
Numeric Number of nodes RBM REM REB

functions MTBDD BMD EVBDD [%] [%] [%]
2x −1 122,659 29,634 3,469 24 2.8 12
1√
x+1

− 1√
2

58,412 28,446 2,857 49 4.9 10

ln(x +1) 100,880 28,442 3,187 28 3.2 11
log2(x +1) 122,542 29,553 3,465 24 2.8 12√

x +1−1 73,406 26,149 2,383 36 3.2 9
2

x+1 −1 114,093 28,348 4,079 25 3.6 14
sin(x) 115,450 22,638 2,853 20 2.5 13

Average 101,063 27,601 3,185 29 3.3 12
Number of fractional bits for function values is 16.
Domain of the functions is 0 ≤ x < 1.
RBM = BMD / MTBDD × 100.
REM = EVBDD / MTBDD × 100.
REB = EVBDD / BMD × 100.

Memory
for EVBDD

Control
circuit Adder

x

f(x)

address

pointer edge-value

Register

Figure 8. Architecture for NFG based on
EVBDD.

compactly than MTBDDs. Fig. 7 shows an example of an
EVBDD representation of the sin(x) function.

Table 3 compares the numbers of nodes in MTBDDs,
BMDs, and EVBDDs for seven numeric functions. BMDs
represent numeric functions more compactly than MTB-
DDs due to the arithmetic transform. However, EVBDDs
are smaller than the BMDs.

In an EVBDD, we can evaluate a discrete function by
traversing the diagram and accumulating the values of tra-
versed edges. Thus, we can systematically design NFGs
for many fixed-point numeric functions using the architec-
ture shown in Fig. 8. Since this architecture consists only
of a memory to store an EVBDD, an accumulator for the
edge values, and a control circuit to traverse the EVBDD, it
can realize various numeric functions easier and faster than
CORDIC.

5. Conclusion and Comments

This paper has introduced three design methods for nu-
meric function generators (NFGs) using word-level deci-
sion diagrams. It showed that by using decision diagrams
for discrete functions, we can systematically design fast and
compact NFGs for a larger class of numeric functions.

References

[1] R. Andraka, “A survey of CORDIC algorithms for FPGA based
computers,” Proc. of the 1998 ACM/SIGDA Sixth Inter. Symp. on
Field Programmable Gate Array (FPGA’98), pp. 191–200, Mon-
terey, CA, Feb. 1998.

[2] R. E. Bryant and Y-A. Chen, “Verification of arithmetic circuits
with binary moment diagrams,” Design Automation Conference,
pp. 535–541, 1995.

[3] J. Cao, B. W. Y. Wei, and J. Cheng, “High-performance architec-
tures for elementary function generation,” Proc. of the 15th IEEE
Symp. on Computer Arithmetic (ARITH’01), Vail, Co, pp. 136–144,
June 2001.

[4] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. Yang,
“Spectral transforms for large Boolean functions with applications
to technology mapping,” Proc. of 30th ACM/IEEE Design Automa-
tion Conference, pp. 54–60, June 1993.

[5] J. Detrey and F. de Dinechin, “Table-based polynomials for
fast hardware function evaluation,” 16th IEEE Inter. Conf.
on Application-Specific Systems, Architectures, and Processors
(ASAP’05), pp. 328–333, 2005.

[6] J. Detrey and F. de Dinechin, “A parameterizable floating-point log-
arithm operator for FPGAs,” 39th Asilomar Conf. on Signals, Sys-
tems and Computers, pp. 1186–1190, 2005.

[7] J. Detrey and F. de Dinechin, “A parameterized floating-point
exponential function for FPGAs,” IEEE Inter. Conf. on Field-
Programmable Technology (ICFPT’05), pp. 27–34, 2005.

[8] F. de Dinechin and A. Tisserand, “Multipartite table methods,” IEEE
Trans. on Comp., Vol. 54, No. 3, pp. 319–330, Mar. 2005.

[9] R. Drechsler and B. Becker, Binary Decision Diagrams: Theory
and Implementation, Kluwer Academic Publishers, 1998.

[10] ANSI/IEEE Standard 754-2008, IEEE Standard for Floating-Point
Arithmetic, 2008.

[11] V. K. Jain, S. A. Wadekar, and L. Lin, “A universal nonlinear com-
ponent and its application to WSI,” IEEE Trans. on Components,
Hybrids, and Manufacturing Technology, Vol. 16, No. 7, pp. 656–
664, Nov. 1993.

[12] V. K. Jain and L. Lin, “High-speed double precision computation
of nonlinear functions,” Proc. of the 12th IEEE Symp. on Computer
Arithmetic (ARITH’95), Bath, England, pp. 107–114, July 1995.

[13] T. Kam, T. Villa, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli, “Multi-valued decision diagrams: Theory and appli-
cations,” Multiple-Valued Logic: An International Journal, Vol. 4,
No. 1-2, pp. 9–62, 1998.

[14] Y-T. Lai and S. Sastry, “Edge-valued binary decision diagrams for
multi-level hierarchical verification,” Proc. of 29th ACM/IEEE De-
sign Automation Conference, pp. 608–613, 1992.

[15] D.-U. Lee, W. Luk, J. Villasenor, and P. Y. K. Cheung, “Hierarchical
segmentation schemes for function evaluation,” Proc. of the IEEE
Conf. on Field-Programmable Technology, Tokyo, Japan, pp. 92–
99, Dec. 2003.

[16] D. M. Lewis, “Interleaved memory function interpolators with ap-
plication to an accurate LNS arithmetic unit,” IEEE Trans. on
Comp., Vol. 43, No. 8, pp. 974–982, Aug. 1994.

[17] C. Meinel and T. Theobald, Algorithms and Data Structures in VLSI
Design: OBDD – Foundations and Applications, Springer, 1998.

[18] D. M. Miller and M. A. Thornton, “QMDD: A decision diagram
structure for reversible and quantum circuits,” 36th International
Symposium on Multiple-Valued Logic, Singapore, May 17-20, 2006.

[19] J.-M. Muller, Elementary Function: Algorithms and Implementa-
tion, Birkhauser Boston, Inc., Secaucus, NJ, 1997.

[20] S. Nagayama and T. Sasao, “On the optimization of heterogeneous
MDDs,” IEEE Trans. on CAD, Vol. 24, No. 11, pp. 1645–1659, Nov.
2005.

[21] S. Nagayama and T. Sasao, “Representations of elementary func-
tions using edge-valued MDDs,” 37th International Symposium on
Multiple-Valued Logic, Oslo, Norway, May 13-16, 2007.

[22] S. Nagayama and T. Sasao, “Complexities of graph-based repre-
sentations for elementary functions,” IEEE Trans. on Computers,
Vol. 58, No. 1, pp. 106–119, Jan. 2009.

[23] J.-A. Piñeiro, S. F. Oberman, J.-M. Muller, and J. D. Bruguera,
“High-speed function approximation using a minimax quadratic in-
terpolator,” IEEE Trans. on Comp., Vol. 54, No. 3, pp. 304–318,
Mar. 2005.

[24] T. Sasao and M. Fujita (eds.), Representations of Discrete Func-
tions, Kluwer Academic Publishers 1996.

[25] T. Sasao and S. Nagayama “Representations of elementary func-
tions using binary moment diagrams,” 36th International Sympo-
sium on Multiple-Valued Logic, Singapore, May 17-20, 2006.

[26] T. Sasao, S. Nagayama, and J. T. Butler, “Numerical function gen-
erators using LUT cascades,” IEEE Transactions on Computers,
Vol. 56, No. 6, pp. 826–838, Jun. 2007.

[27] M. J. Schulte and E. E. Swartzlander, Jr., “Hardware designs for
exactly rounded elementary functions,” IEEE Trans. on Comp.,
Vol. 43, No. 8, pp. 964–973, Aug. 1994.

[28] M. J. Schulte and J. E. Stine, “Symmetric bipartite tables for accu-
rate function approximation,” 13th IEEE Symp. on Comput. Arith.,
Asilomar, CA, Vol. 48, No. 9, pp. 175–183, 1997.

[29] M. J. Schulte and J. E. Stine, “Approximating elementary functions
with symmetric bipartite tables,” IEEE Trans. on Comp., Vol. 48,
No. 8, pp. 842–847, Aug. 1999.

[30] R. Stankovic and J. Astola, “Remarks on the complexity of arith-
metic representations of elementary functions for circuit design,”
Workshop on Applications of the Reed-Muller Expansion in Circuit
Design and Representations and Methodology of Future Computing
Technology, pp. 5–11, May 2007.

[31] J. E. Stine and M. J. Schulte, “The symmetric table addition method
for accurate function approximation,” Jour. of VLSI Signal Process-
ing, Vol. 21, No. 2, pp. 167–177, June 1999.

[32] N. Takagi, T. Asada, and S. Yajima, “Redundant CORDIC methods
with a constant scale factor for sine and cosine computation,” IEEE
Trans. on Comp., Vol. 40, No. 9, pp. 989–995, Sept. 1991.

[33] J. E. Volder, “The CORDIC trigonometric computing technique,”
IRE Trans. Electronic Comput., Vol. EC-820, No. 3, pp. 330–334,
Sept. 1959.

[34] I. Wegener, Branching Programs and Binary Decision Diagrams:
Theory and Applications, SIAM, 2000.

[35] M. R. Williams, History of Computing Technology, IEEE Computer
Society Press, Los Alamitos, CA, 1997.

[36] W. Wong and E. Goto, “Fast evaluation of the elementary functions
in single precision,” IEEE Trans. on Comp., Vol. 44, No. 3, pp. 453–
457, Mar. 1995.

[37] S. N. Yanushkevich, D. M. Miller, V. P. Shmerko, and R. Stankovic,
Decision Diagram Techniques for Micro- and Nanoelectronic De-
sign, CRC Press, Taylor & Francis Group, 2006.

